A Mixed Finite Element Method for the Biharmonic Problem Using Biorthogonal or Quasi-Biorthogonal Systems
نویسنده
چکیده
We consider a finite element method based on biorthogonal or quasi-biorthogonal systems for the biharmonic problem. The method is based on the primal mixed finite element method due to Ciarlet and Raviart for the biharmonic equation. Using different finite element spaces for the stream function and vorticity, this approach leads to a formulation only based on the stream function. We prove optimal a priori estimates for both stream function and vorticity, and present numerical results to demonstrate the efficiency of the approach.
منابع مشابه
Mixed Finite Element Methods for the Poisson Equation Using Biorthogonal and Quasi-Biorthogonal Systems
We introduce two three-field mixed formulations for the Poisson equation and propose finite element methods for their approximation. Both mixed formulations are obtained by introducing a weak equation for the gradient of the solution by means of a Lagrange multiplier space. Two efficient numerical schemes are proposed based on using a pair of bases for the gradient of the solution and the Lagra...
متن کاملA Stabilized Mixed Finite Element Method for Thin Plate Splines Based on Biorthogonal Systems
The thin plate spline is a popular tool for the interpolation and smoothing of scattered data. In this paper we propose a novel stabilized mixed finite element method for the discretization of thin plate splines. The mixed formulation is obtained by introducing the gradient of the smoother as an additional unknown. Working with a pair of bases for the gradient of the smoother and the Lagrange m...
متن کاملBiorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems
In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...
متن کاملNearly Incompressible Linear Elasticity Using Simplicial Meshes
We present two finite element methods for simplicial meshes to approximate the solution of the problem of nearly incompressible elasticity. Although both approaches are based on mixed formulations of linear elastic equations and biorthogonal systems, one of them is nonsymmetric, and the other symmetric. An interesting feature of both approaches is that displacement-based formulations can be obt...
متن کاملChallenges and Applications of Boundary Element Domain Decomposition Methods
Boundary integral equation methods are well suited to represent the Dirichlet to Neumann maps which are required in the formulation of domain decomposition methods. Based on the symmetric representation of the local Steklov– Poincaré operators by a symmetric Galerkin boundary element method, we describe a stabilized variational formulation for the local Dirichlet to Neumann map. By a strong cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 46 شماره
صفحات -
تاریخ انتشار 2011